Basis for next-gen bioprocesses

Please Sign In To Earn 5 Points For Reading This Article...(sign-up is FREE!)

The marine bacterium Vibrio natriegens is remarkable for its extremely rapid growth. It is the fastest growing non-pathogenic organism discovered to date. This is combined with their extremely fast uptake of substrates – the reactant materials consumed in catalytic reactions. “We are pushing hard to establish Vibrio natriegens in biotechnology,” says Bastian Blombach, Professor of Microbial Biotechnology at TUM.

Prof. Blombach’s team at TUM Campus Straubing for Biotechnology and Sustainability is investigating ways to use this marine bacteria to make production processes more time-efficient, thus conserving resources, while reducing the scale of biotechnology facilities.

Marine bacterium helps to produce succinic acid
The researchers have now succeeded in using the example of succinic acid to demonstrate the potential of the marine bacterium. Succinic acid is an organic substance found in fossilized resins such as amber and in bituminous coal. In nature it can be found in unripe grapes, rhubarb and tomatoes, for instance.

Succinate, the salt of succinic acid, occurs in the metabolism of all organisms, where it is used in an intermediate stage in the breakdown of glucose. The natural presence of succinic acid in metabolic processes is now being used in biotechnology efforts to produce the acid with microorganisms such as the marine bacterium studied by the TUM researchers. This requires an understanding of the metabolic action of microbial platforms such as Vibrio natriegens.

Potential for industrial biotechnology
Prof. Blombach’s team is applying metabolic engineering methods to develop these innovative microbial systems for industrial biotechnology. With advanced genetic engineering techniques, it is then possible to create tailor-made cell factories.

Dr. Felix Thoma, a researcher at the Microbial Biotechnology and first author of the study, explains how the team produced succinic acid: “We filled plastic tubes with a saline solution, in which Vibrio natriegens thrives, added glucose, and sealed them airtight. In the absence of oxygen, the bacteria converted the sugar and the dissolved CO2 in the medium into succinic acid. The process was completed after around two to three hours.”

In a further step, the researchers conducted the experiments in a bioreactor, where they could control the pH level, which otherwise becomes gradually inhospitable as the acid forms. This also allowed them to continually feed the co-substrate, CO2.

A bacterium soon to be a key process partner
Succinic acid is among 12 key products where bioengineering production could compete successfully with petrochemical methods in the future. “Our results after just two years of development work with Vibrio natriegens are comparable to what we see in other systems after 15 or 20 years. That makes this marine bacterium a new and potent actor in industrial biotechnology,” says Thoma.

Through targeted genetic modifications, the research team has succeeded in optimizing the bacterium’s metabolism to the point where it efficiently converts glucose into succinic acid – at a high level of productivity. “On the way to a viable industrial process, there is still work to do in terms of the process design,” says Prof. Blombach. The team is now working to develop the process with Vibrio natriegens and the usability of renewable raw materials and waste flows that do not compete with the food industry.

Research Report: “Metabolic engineering of Vibrio natriegens for anaerobic succinate production”

Related Links
Technical University of Munich (TUM)
Bio Fuel Technology and Application News

 

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

 

SpaceDaily Contributor
$5 Billed Once
credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly
paypal only



BIO FUEL
Scientists use “green” solvent and natural pigment to produce bioplastic
Sao Paulo, Brazil (SPX) Feb 18, 2022
Scientists based in Brazil and Portugal have developed an environmentally sustainable process to produce biodegradable plastic using pigment extracted from yeast by “green” solvents. In an article published in the journal Green Chemistry, they show that this biodegradable plastic could in future be used in smart packaging with antioxidant and anti-microbial properties. With similar applications to those of conventional plastics derived from oil, gas and coal, which take hundreds of years to decom … read more

Author:

Leave a Reply

Inside The Energy Portal

Articles shared by The Energy Portal are designed to inform our readers and allow them to find a singular destination for alternative, renewable and green energy news.

Share The Energy Portal

Recent Posts